Short communication

Feeding habits of juvenile yellowfin tuna (Thunnus albacares) in Ecuadorian waters assessed from stomach content and stable isotope analysis

José Luis Varelaa,b,c,*, Ketty María Intriagoa, Julio César Floresa, Cristhian Ronald Lucas-Pilozoa

a Departamento Central de Investigación, Universidad Laica Eloy Alfaro de Manabí, Av. de Circunvalación, Manta, Ecuador
b Departamento de Biología, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Av. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
c Biology Department, Acadia University, 33 Westwood Ave., B4P 2B6 Wolfville, Nova Scotia, Canada

A R T I C L E I N F O

Keywords: Scombridae, Feeding, Ontogenetic changes, Stomach content analysis, Stable isotope analysis, Bayesian model

ABSTRACT

Size-related shifts in feeding habits of juvenile yellowfin tuna (YFT), Thunnus albacares (Bonnaterre, 1788), in Ecuadorian waters were assessed using stomach content analysis (SCA) (n = 339) and stable isotope analysis (n = 83). In all size classes, fishes were the predominant prey group in the diet (Alimentary Index, %AI = 96.86) followed by cephalopods (%AI = 3.29) and crustaceans (%AI = 0.03). PERMANOVA analysis revealed significant variations in diet with body size: i) Class I YFT (≤50 cm in fork length, FL) fed mainly on lanternfishes, family Myctophidae (%AI = 37.34), and jumbo squid, Dosidicus gigas (%AI = 36.06), Class II YFT (50–60 cm, FL) consumed bullet and frigate tunas, Auxis spp., unidentified fish and jumbo squid (%AI = 47.75, %AI = 25.06 and %AI = 21.67, respectively), and Class III YFT (≥60 cm, FL) preyed almost exclusively on bullet and frigate tunas (%AI = 90.85). Mean ± SD muscle isotope values were 12.14 ± 1.95‰ for δ15N and −17.42 ± 0.27‰ for δ13C. Stable isotope Bayesian ellipses, SEAc, did not show trophic overlap among size classes. A significant positive linear correlation was observed between δ15N and δ13C measured in liver and muscle tissues with body size, suggesting an increase of prey size as tuna grew. These results indicate that the observed size-related diet shifts are not only related to prey type, but also to prey size.

1. Introduction

The yellowfin tuna, Thunnus albacares (Bonnaterre, 1788), is an epipelagic species widely distributed in the tropical and sub-tropical waters of the world’s major oceans (Collette and Nauen, 1983). For management purposes, two stocks are considered in the Pacific Ocean: the stock of the Eastern Pacific Ocean (EPO) and the stock of the Western-Central Pacific Ocean (WCPO), both of which have been subjected to intensive fishing over the last decades (ISSF, 2015). In Ecuador, this species represents one of the most important fishery resources, with a total landing of 253,743 tons in 2013 (INP, 2015). In spite of its commercial importance, there are very few studies based on stomach content analysis (SCA) addressing the feeding habits of yellowfin tuna (YFT) in the Gulf of Guayaquil and identified scombrid fishes as the most important resources, whereas Baque-Meniscal et al. (2012) documented the importance of squid Dosidicus gigas in the diet of YFT caught around the Galapagos Islands.

Although SCA is the most common method used to assess food habits and dietary composition of tunas, it may provide inaccurate results due to several factors, including fast digestion rates and regurgitation of gastric contents during capture events (Aloncle and Delaporte, 1970; Chase, 2002; Olson and Boggs, 1986). For these reasons, stable isotope analysis (SIA) has become a useful method to complement gut analyses as it provides information on consumed prey at longer time scales (Logan et al., 2006; Peterson and Fry, 1987). The carbon stable isotope ratios (δ13C) give information about dietary sources (Fry, 2006; Fry and Sherr, 1984), whereas nitrogen stable isotope ratios (δ15N) are used as indicators of the consumer’s trophic level (Post et al., 2007). Both δ15N and δ13C can provide trophic information over weeks to months, depending on the tissue turnover rate (Gannes et al., 1997). In fishes, slow turnover tissues like muscle (Hesslein et al., 1993; MacAvoy et al., 2001) produce information trophic biology at mid-time scale (months), whereas tissues with faster metabolic rates such as liver (Guelinckx et al., 2007; Suzuki et al., 2005) give information at a shorter time scale (weeks) (Logan et al., 2006; MacNeil et al., 2006). Furthermore, stable isotopes are also good...
descriptors of trophic niches and the values of $\delta^{13}C$ and $\delta^{15}N$ in predator tissues allow us to estimate trophic parameters such as niche width and overlap (Rearhop et al., 2004; Newsome et al., 2007; Syväranta et al., 2013).

In comparison with strictly poikilothermic fish species, tunas have high standard metabolic rates (Korsmeyer and Dewar, 2001), which may be particularly high in juvenile individuals (i.e. in rapid growth phase) and in individuals that perform long-distance migrations (Harden Jones, 1984). Their feeding ecology, therefore, has critical implications for life history features of growth and survival (Goñi et al., 2011).

Size-related shifts in the feeding patterns of juvenile YFT by SCA and SIA have been assessed in Sri Lankan, Hawaiian and Taiwanese waters (Graham et al., 2007; Maldenieni, 1996; Weng et al., 2015), but no similar studies have been undertaken in Ecuadorian waters. Hence, the present study was conducted to investigate size-related variations in dietary composition, trophic niche width and overlap of juvenile YFT in Ecuadorian waters by combining stomach content and stable isotope analysis.

2. Material and methods

2.1. Sampling and stomach-content analysis

A total number of 339 juvenile YFT, ranging from 41.1 to 75.8 cm in straight fork length (FL) and from 1.1 to 6.4 kg in body mass, were sampled from purse seine commercial vessels landing in Manta (ECuador) (Fig. 1) from July 2014 through March 2015. The straight fork length (FL) was estimated from the curved fork length (CFL) using the equation proposed by Scida et al. (2001): FL = 0.8 + 0.96 × CFL.

Whole stomachs were collected from all the sampled fish and stored at -20 °C until analysis. In the laboratory, they were dissected and their contents thoroughly examined under a stereoscopic microscope. Preys were grouped by taxon and their wet weight was recorded to the nearest 0.01 g. Partially digested fish were identified from otoliths (Harvey et al., 2000; García-Godos Naveda, 2001), whereas cephalopod prey were identified from mandible using the key of Clarke (1986). Stomachs containing only hard parts were excluded from SCA.

White muscle and liver samples were removed from 83 YFT and kept frozen at -20 °C before being treated for analysis. Once thawed, all tissue samples were rinsed with distilled water to remove blood remains and placed into glass tubes for cryodesiccation until total dryness. Then, they were ground to powder by pestle and mortar, packed into tin capsules and analysed for ^{13}C and ^{15}N in pre-remains which were Vienna Pee Dee belemnite for carbon and atmospheric N$_2$ for nitrogen respectively (Amundsen et al., 1996). In this procedure, prey-specific abundance is piled against%Oi in order to obtain information about prey importance and feeding strategy of the predator. The prey-specific abundance is calculated as follows: $\%Pi = (\text{weight of all prey in the stomach containing prey i})/\text{total weight of all prey}$.

To test differences in $\delta^{13}C$ and $\delta^{15}N$ values among size classes in both muscle and liver tissues, a Kruskal-Wallis test was used. Then, differences between pairs of sample groups were assessed using Mann-Whitney U test. Significant differences in $\delta^{13}C$ and $\delta^{15}N$ between liver and muscle tissues were analysed by Student's t-test or Mann-Whitney U test. Simple regression analyses were used to evaluate the relationship between $\delta^{15}N$ and FL, the strength of the correlation being determined by the Pearson's correlation coefficient, r. A significance level of $\alpha = 0.05$ was considered for all statistical tests. Statistical analyses were performed using Statgraphics Centurion v16.2.04.

The isofagic niche width and overlap of the three size classes were also estimated by standard Bayesian ellipses adjusted for small sample size (SEAc) using the SIBER package (Jackson et al., 2011) of SIAR (Stable Isotope Analysis in R) (Parnell and Jackson, 2013). SEAc overlap values ≥ 0.8 were considered to be biologically significant (Cartes and Sardà, 1989).

3. Results

3.1. Stomach content analysis

The length frequency distribution of the sampled YFT is depicted in Fig. 2. Of the 339 stomachs analysed, 219 (64.60%) were empty, whereas the remaining 120 (35.40%) contained at least one prey item (Table 1). The diet comprised 16 prey taxa, including 11 fishes, 6 cephalopods and 2 crustaceans (Table 2). Teleost fishes were the predominant prey group (%AI = 96.68), Auxis spp. was the most important teleost (%AI = 90.85) followed by the family Myctophidae.
Fig. 1. Map of the study area. The filled circle represents the sampling location.

Fig. 2. Length frequency distribution of the yellowfin tuna sampled.
Muscle samples also showed significant differences were observed in class III YFT (Mann–Whitney test or Mann–Whitney U test, p < 0.01) in classes I and II (p = 0.005), I and III (p = 0.001), and II and III (p = 0.001). The PERMDISP analysis yielded no significant differences (PERMDISP, p = 0.313), suggesting that the differences obtained with PERMANOVA were not due to multivariate dispersion.

Teleost fishes were the predominant prey group in all size classes, but prey composition varied with body size. Class I YFT (<50 cm, FL) preyed mainly on myctophids and jumbo squid, which showed similar %AI values (37.34 and 36.06, respectively) (Table 2). Nevertheless, the former was the main contributor to the similarity (56.97%) within this size class (Fig. 3). The medium-sized YFT (50–60 cm, FL) mainly consumed bulb and frigate tunas, Auxis spp., unidentifiable fish and jumbo squid in terms of %AI (47.75, 25.06 and 21.67) and contribution to similarity (38.47, 22.19 and 32.56%, respectively) (Table 2, Fig. 3). The largest YFT (>60 cm, FL) fed almost exclusively on Auxis spp. (%AI = 90.85) as also indicated by the SIMPER analysis (contributing to 94.47% of the similarities) (Table 2, Fig. 3).

The Amundsen plot shows that ABFT in the SoG have a varying degree of specialisation on different prey (Fig. 4). Most prey species were located in the lower left corner of the graph or close to the vertical axis, suggesting that they were unimportant and rare. The teleost Auxis spp., which was consumed by a relatively large number of tuna (%O = 32.50), can be considered as the dominant prey.

The niche width estimated from Levin’s index decreased with YFT size from 0.18 for small YFT to 0.15 for medium-sized YFT and <0.01 for large YFT (Table 2).

3.2. Stable isotope analysis

Mean isotopic values of YFT muscle and liver samples are shown in Table 3. δ¹⁵N values ranged from 8.32 to 15.53‰ for muscle and from 7.30 to 14.01‰ for liver. δ¹³C values ranged from −17.97 to −16.88‰ for muscle and from −19.12 to −16.42‰ for liver. Both muscle and liver samples showed significant isotopic differences among size classes (Kruskal–Wallis followed by Mann–Whitney U test, p < 0.05), except for liver δ¹³C between size classes I and II (p > 0.05). In class II and class III YFT, the δ¹⁵N values in muscle tissue were significantly higher than in liver (Mann–Whitney U test, p < 0.01, statistical analysis not shown in table), whereas no differences were observed in class III YFT (Mann–Whitney U test, p > 0.05). Muscle samples also showed significantly higher δ¹³C values (Student’s t-test or Mann–Whitney U test, p < 0.01) in classes I and II YFT; however, no differences were detected in class III YFT (Mann–Whitney U test, p > 0.001).

A moderate positive correlation was observed between δ¹⁵N and FL in muscle (r = 0.53, p < 0.001) and liver tissues (r = 0.57, p < 0.001). δ¹³C and FL were also moderately correlated in muscle tissue (r = 0.61, p < 0.001), whereas a relatively weak relationship was found between both variables in liver samples (r = 0.44, p < 0.001) (Fig. 5).
Table 2

Diet composition of yellowfin tuna by size classes. Percentage of weight (%W), mean percent weight (%MW) ± SD, occurrence (%O) and alimentary index (%AI). The trophic niche width was calculated by the standard Levin’s index (Bi).

<table>
<thead>
<tr>
<th>Preys</th>
<th>Class I (≤50 cm)</th>
<th></th>
<th></th>
<th></th>
<th>Class II (50-60 cm)</th>
<th></th>
<th></th>
<th></th>
<th>Class III (≥60 cm)</th>
<th>Overall</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%W</td>
<td>%MW ± SD</td>
<td>%O</td>
<td>%AI</td>
<td>%W</td>
<td>%MW ± SD</td>
<td>%O</td>
<td>%AI</td>
<td>%W</td>
<td>%MW ± SD</td>
<td>%O</td>
<td>%AI</td>
<td>%W</td>
<td>%MW ± SD</td>
</tr>
<tr>
<td>Fishes</td>
<td>66.88</td>
<td>56.57 ± 49.07</td>
<td>57.86</td>
<td>75.04</td>
<td>60.83</td>
<td>45.34 ± 77.31</td>
<td>70.83</td>
<td>83.39</td>
<td>98.44</td>
<td>84.32 ± 33.65</td>
<td>76.47</td>
<td>99.64</td>
<td>92.81</td>
<td>68.90 ± 45.05</td>
</tr>
<tr>
<td>Auxis spp.</td>
<td>15.37</td>
<td>15.68 ± 36.70</td>
<td>15.79</td>
<td>17.40</td>
<td>39.83</td>
<td>27.70 ± 44.22</td>
<td>29.17</td>
<td>47.75</td>
<td>91.85</td>
<td>55.82 ± 46.44</td>
<td>58.88</td>
<td>90.85</td>
<td>90.85</td>
<td>31.86 ± 23.32</td>
</tr>
<tr>
<td>Myctophidae</td>
<td>16.49</td>
<td>30.37 ± 45.47</td>
<td>31.58</td>
<td>37.34</td>
<td>7.64</td>
<td>28.36 ± 45.34</td>
<td>27.96</td>
<td>37.62</td>
<td>98.44</td>
<td>52.03 ± 41.67</td>
<td>51.88</td>
<td>98.44</td>
<td>98.44</td>
<td>33.74 ± 10.17</td>
</tr>
<tr>
<td>Sternoptychus</td>
<td>2.75</td>
<td>2.63 ± 16.22</td>
<td>2.75</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Hypocharinus</td>
<td>0.91</td>
<td>3.31 ± 16.00</td>
<td>0.91</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Myctophum</td>
<td>0.69</td>
<td>5.32 ± 22.63</td>
<td>0.69</td>
<td>5.32</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Cephalopods</td>
<td>0.69</td>
<td>5.32 ± 22.63</td>
<td>0.69</td>
<td>5.32</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Histioteuthis</td>
<td>0.18</td>
<td>0.48 ± 2.97</td>
<td>0.18</td>
<td>0.48</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Ommastrephidae</td>
<td>0.37</td>
<td>2.63 ± 16.22</td>
<td>0.37</td>
<td>2.63</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Thysanoteuthis</td>
<td>0.02</td>
<td>0.52 ± 3.61</td>
<td>0.02</td>
<td>0.52</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Unidentifiable fish</td>
<td>1.50</td>
<td>3.08 ± 16.23</td>
<td>1.50</td>
<td>3.08</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Crustaceans</td>
<td>0.02</td>
<td>13.84 ± 34.18</td>
<td>0.02</td>
<td>13.84</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Porcellanidae larvae</td>
<td>0.18</td>
<td>2.82 ± 16.23</td>
<td>0.18</td>
<td>2.82</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Selene peruviana</td>
<td>0.37</td>
<td>2.63 ± 16.22</td>
<td>0.37</td>
<td>2.63</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Myctophum sp.</td>
<td>0.03</td>
<td>3.04 ± 17.14</td>
<td>0.03</td>
<td>3.04</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Unidentifiable cephalopod</td>
<td>1.50</td>
<td>3.08 ± 16.23</td>
<td>1.50</td>
<td>3.08</td>
<td>2.50</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
<td>2.50</td>
<td>3.06</td>
<td>0.56</td>
<td>2.50 ± 16.22</td>
</tr>
<tr>
<td>Trophic niche width (Bi)</td>
<td>0.18</td>
<td>0.15 ± 0.01</td>
<td>0.18</td>
<td>0.15</td>
<td>0.14</td>
<td>0.01 ± 0.01</td>
<td>0.14</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01 ± 0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01 ± 0.01</td>
</tr>
</tbody>
</table>
myctophids and jumbo squids along with an increased proportion of Auxis spp. The second shift was observed around 60 cm, where YFT preyed almost exclusively on Auxis spp. Although class II and class III YFT primarily fed on these scombrids, the diet of the former group was more varied.

Although the YFT has been widely defined as a generalist and opportunistic predator (Ménard et al., 2006; Potier et al., 2007; Young et al., 2010; Olson et al., 2014, 2016), the niche width estimated from the standardized Levin’s index suggests that this species behaves as a specialist feeder in the Ecuadorian waters. A similar observation was reported for other large pelagic fishes, such as hammerhead sharks (Sphyrna lewini), thresher sharks (Alopias pelagicus and Alopias superciliosus) and dolphin fishes (Coryphaena hippurus) (Estupiñán-Montaño et al., 2009; Polo-Silva et al., 2007, 2009, 2013; Varela et al., 2017), caught around the same area. The narrow niche width found in these large pelagic fishes may be related to the fact that the food chain is mainly dominated by few species located at middle trophic levels. In fact, Olson and Waters (2003), based in Ecopath models, reported that cephalopods and Auxis spp. are the most influential species on Eastern tropical Pacific Ocean ecosystems. It is noteworthy that the trophic niche underwent a decrease with increasing body size, which might be caused by an increase of interspecific competition (Layman et al., 2007). In contrast, a positive relationship between body size and niche breadth has been recently reported for subadults and adults Thunnus thynnus (77–212 cm in FL) in the western Mediterranean Sea (Sorell et al., 2017).

4.2. Stable isotope analysis

\[\delta^{15}N \] measured in muscle and liver tissues (12.14 and 11.30‰) showed higher values than those observed in YFT tuna ≥ 45 cm caught in Hawaiian Island (10.2 and 8.4‰; Graham et al., 2007). Such disparities could be due to several factors, including variation in the trophic level caused by differences either in the diet or in the isotopic baseline composition (Graham et al., 2010; Popp et al., 2007). Considering muscle \[\delta^{15}N \] values of 10.2‰ for Hawaiian YFT (Graham et al., 2007), values in the same row bearing different superscript letters are significantly different (p < 0.05).

Table 3

<table>
<thead>
<tr>
<th></th>
<th>Class I (< 50 cm) and n = 11</th>
<th>Class II (50-60 cm) and n = 44</th>
<th>Class III (≥ 60 cm) and n = 28</th>
<th>Mean n = 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\delta^{15}N] (‰)</td>
<td>Muscle 9.73 ± 0.65<sup>a</sup></td>
<td>12.19 ± 1.79<sup>b</sup></td>
<td>13.02 ± 1.76<sup>c</sup></td>
<td>12.14 ± 1.95</td>
</tr>
<tr>
<td></td>
<td>Liver 9.33 ± 1.30<sup>a</sup></td>
<td>11.21 ± 1.69<sup>b</sup></td>
<td>12.21 ± 0.98<sup>c</sup></td>
<td>11.30 ± 1.68</td>
</tr>
<tr>
<td>[\delta^{13}C] (‰)</td>
<td>Muscle −17.68 ± 0.18<sup>a</sup></td>
<td>−17.47 ± 0.27<sup>b</sup></td>
<td>−17.23 ± 0.17<sup>c</sup></td>
<td>−17.42 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>Liver −18.05 ± 0.28<sup>a</sup></td>
<td>−17.86 ± 0.41<sup>a</sup></td>
<td>−17.37 ± 0.65<sup>b</sup></td>
<td>−17.72 ± 0.55</td>
</tr>
</tbody>
</table>

Differences among size classes were analysed using Kruskal-Wallis test, followed by Mann-Whitney U test.
2007), and 12.1‰ for individuals sampled in Ecuador (present data), and a prey-muscle discrimination factor of 2.1‰ (Popp et al., 2007), we conclude that YFT occupy a similar trophic level (TL) in both areas (TL = 3.7 and TL = 4.0, respectively) (calculated from the equation proposed by Post et al. (2007); data of baseline species have been taken from Graham et al. (2007) and Polo-Silva et al. (2013)). These results, therefore, confirm that the isotopic differences between both areas are mainly caused by differences in δ¹⁵N values at the base of the food webs. Comparing with other top predators co-occurring in the area, the δ¹⁵N values measured in muscle samples showed lower values than those reported in muscle of thresher (A. pelagicus; 13.6–14.0‰; Polo-Silva et al., 2013) and hammerhead (S. lewini and S. zygaena; 14.8–15.4‰; Loor-Andrade et al., 2015) sharks. These observations suggest that these elasmobranchs seemingly occupy higher trophic levels; in fact, Hunsicker et al. (2012) reported that YFT are significantly preyed upon by hammerhead sharks. Another plausible cause for such differences could be related to the low turnover rate of shark muscle (over one year) (Logan and Lutcavage, 2010; MacNeil et al., 2005), which may reflect isotopic values of preys from a variety of EPO oceanic ecosystems.

Because δ¹⁵N increases more sharply with trophic levels than δ¹³C (DeNiro and Epstein, 1981), the narrower δ¹³C range found in both muscle and liver samples was not unexpected. The range of muscle δ¹³C values observed in the present study (−16.97 to −16.88‰) was lower than those observed in the western Indian Ocean (−17.4 to −15.2‰; Ménard et al., 2007) (−17.2 to −15.7‰; Zudaire et al., 2015) and in the eastern Pacific Ocean (−17.8 to −15.4‰; Olson et al., 2010). In the present study, a slightly wider δ¹³C range (−19.12 to −16.42‰)

<table>
<thead>
<tr>
<th>Group</th>
<th>SEAc</th>
<th>SEAc, Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>class I</td>
<td>0.35</td>
<td>I vs II (0.01)</td>
</tr>
<tr>
<td>class II</td>
<td>1.57</td>
<td>I vs III (0.01)</td>
</tr>
<tr>
<td>class III</td>
<td>0.96</td>
<td>II vs III (0.43)</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>class I</td>
<td>0.72</td>
<td>I vs II (0.09)</td>
</tr>
<tr>
<td>class II</td>
<td>2.21</td>
<td>I vs III (0.01)</td>
</tr>
<tr>
<td>class III</td>
<td>2.06</td>
<td>II vs III (0.62)</td>
</tr>
</tbody>
</table>

Fig. 5. Relationships between a) δ¹⁵N and b) δ¹³C and straight fork length for muscle and liver tissues. Filled circles, muscle data; open circles, liver data. Linear regressions are represented as solid lines for muscle and dashed lines for liver.
suggests an increase of prey size as the predator grows (see Jennings et al., 2002; O’Farrell et al., 2014). In contrast, no relationship was found between YFT body length and δ^{15}N and δ^{13}C values in the western Indian Ocean and eastern Pacific Ocean (Ménard et al., 2007; Olson et al., 2010). Our findings would indicate that the observed size-related diet shifts are not only related to prey type, but also to prey size, as was reported by Varghese and Somvanshi (2016) in YFT caught in the Arabian Sea.

The trophic diversity estimated by the Bayesian standard ellipse corrected areas (SEAc) (Jackson et al., 2011) showed that the diet of the smallest fish was less diverse than that of the medium-size and largest individuals, which is not consistent with the estimations based on SCA. These contrasting results may be due to a recent diet shift which is not reflected in the isotopic composition of muscle and liver tissues (Medina et al., 2015).

5. Conclusion

By combining stomach content (SCA) and stable isotope analysis (SIA), we provide new information regarding the feeding habits, trophic niche width and trophic overlap of juvenile yellowfin tuna (YFT) in Ecuadorian waters. Our findings indicate that this species is an epipelagic carnivorous predator which shows two size-related dietary shifts to occur at a FL ∼ 50 cm and FL ∼ 60 cm. The low number of muscle and liver samples, especially for the class I YFT, along with the lack of information on the accurate location of capture, did not allow us to study seasonal and/or spatial variations of this species in the Ecuadorian waters. Further studies, therefore, should be addressed to assess seasonal and spatial variation in the feeding ecology of this large pelagic fish.

Acknowledgements

The authors thank Maria Lema (Unidad de Técnicas Instrumentales de Análisis, Universidade da Coruña) for isotopic analysis, and Antonio Medina for his valuable comments and suggestions. The present work has been funded by the Andalucía Talent Hub Program launched by the Andalusian Knowledge Agency, co-funded by the European Union’s Seventh Framework Program, Marie Skłodowska-Curie actions (COFUND – Grant Agreement no 291780) and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía. J.L.V. benefitted from a grant under the Prometeo Project programme (SENESCYT, Ecuador).

References