Diet of common dolphinfish (Coryphaena hippurus) in the Pacific coast of Ecuador

JOSÉ LUIS VARELA1,2,3, CRISTHIAN RONALD LUCAS-PILOZO1 AND MANUEL MARÍA GONZÁLEZ-DUARTE4

INTRODUCTION

The common dolphinfish (Coryphaena hippurus, Linnaeus 1758) is a cosmopolitan species distributed through the tropical and subtropical regions of the Pacific, Indian and Atlantic Oceans (Palko et al., 1982). In Ecuador, this species is exploited by artisanal boats and represents one of the most important fishery resources because its flesh is highly appreciated in American markets (Patterson & Martinez, 1991). In spite of the local commercial importance, few studies have been conducted so far to evaluate the feeding habits of the dolphinfish in the Ecuadorian Pacific coast. Trophic ecology studies based on stomach content analysis provide useful information to guide management and conservation efforts of fishery resources within the ecosystem-based fisheries management framework (EBFM) (Ainsworth et al., 2010).

The dolphinfish are usually confined to the upper 30 m of the water column, or between the surface and the thermocline (<30 m) (Palko et al., 1982; Tripp-Valdez et al., 2015). Like other large pelagic fishes, this species plays an important role in epipelagic ecosystems, since it may delineate the structure of the food-webs by top-down controls. Previous trophic biology studies carried out in the Northern Pacific Ocean, Atlantic Ocean and Mediterranean Sea have revealed that C. hippurus feeds on a wide variety of fish and invertebrate pelagic organisms (Oxenford & Hunte, 1999; Tripp-Valdez et al., 2015), and so has been defined as a non-selective and generalist predator (Masutí et al., 1998; Castriota et al., 2007). New data regarding the dolphinfish trophic biology in Ecuadorian waters may be useful to understand the pelagic food webs in the Eastern Pacific Ocean (EPO) ecosystem. With this purpose, the present study was undertaken to determine the diet composition, feeding patterns, niche width and consumption rate of the common dolphinfish considering temporal and size-related variations.

MATERIALS AND METHODS

Sampling and stomach-content analysis

Freshly caught common dolphinfish (N = 320), ranging from 51 to 149 cm in total length (TL), were sampled in Playita Mía (Manta, Ecuador) (Figure 1). The fish were captured by artisanal boats during night-time hours off the coast of Ecuador in December–May (2014–2015). The main bait species used in the fishing operations were jumbo squid (Dosidicus gigas), longfin salma (Xenichthys xantii) and chere-chere grunt (Haemulon steindachneri).

Whole stomachs (N = 320) were collected from each fish and stored at −20°C until analysis. In the laboratory, they were dissected for prey identification to the lowest possible taxonomic level. Food items considered to be bait were not

Keywords: Coryphaenidae, trophic biology, stomach content analysis, food items

Submitted 18 November 2015; accepted 19 January 2016

Downloaded from http://www.cambridge.org/core, Acadia University, on 08 Sep 2016 at 19:04:57, subject to the Cambridge Core terms of use, available at http://www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0025315416000175
taken into consideration for analysis, and the stomachs containing only bait were classified as empty. Hard parts (fish otoliths and cephalopod beaks) were used for identification of partially digested prey using specific taxonomic keys (Clarke, 1986; Harvey et al., 2000; García-Godos Naveda, 2001).

**Data analysis**

The dietary importance of each prey was assessed by three indices: (1) percentage of wet weight (%W_i), (2) frequency of occurrence (%O_i) and (3) the alimentary index proposed by Kawakami & Vazzoler (1980) expressed as percentage according to the formula: %AI_i = [(%O_i × %W_i)/Σ(%O_i × %W_i)] × 100.

To assess whether the number of stomachs analysed was adequate to describe the diet, the cumulative curve of new prey items was plotted against the cumulative number of stomachs (Ferry & Cailliet, 1996). The cumulative curve was randomly built by resampling the stomachs 500 times by the software R (R Development Core Team, 2015). To determine whether the curve reached an asymptote, the slope of the new cumulative percentage of prey was plotted against the cumulative number of stomachs and A_i is the average time required to evacuate the average proportion of prey i.

Because the dolphinfish feeds during day and night hours (Olson & Galván-Magaña, 2002), daily meal was estimated by multiplying ñ by 24 h. Daily ration (expressed as percentage) was then calculated by dividing the daily meal by the body mass of the dolphinfish. The body mass was estimated from the length using the equation proposed by Lasso & Zapata (1999): BM = 0.2224 × (0.8278 × TL)^-2.78, where BM is the body mass (g) and TL is the total length (cm). Size-related shifts in daily ration were investigated by grouping the fish into three size classes: Class I (< 80 cm in TL), Class II (80–110 cm in TL) and Class III (≥ 110 cm in TL).

**RESULTS**

The size frequency distribution of the sampled fish is presented in Figure 2. Of the 320 stomachs examined, 188 were considered empty (55.75%) and 132 contained prey (44.25%). The diet comprised of 16 taxa, including 11 fishes, two cephalopods, two crustaceans and one gastropod (Table 1). Fish was the most abundant prey group (%AI = 95.39) followed by cephalopod (%AI = 4.13) and crustacean (%AI = 0.48). The most abundant taxa in terms of %AI were the Exocoetidae family and Auxis sp. (57.13 and

![Figure 1](http://dx.doi.org/10.1017/S0025315416000175)
Diet of Dolphinfish in Ecuador

25.25%, respectively), whereas the jumbo squid (Dosidicus gigas) was the most important invertebrate prey-species (%AI = 7.65) (Table 1).

The cumulative prey curve reached the asymptote for the last four points (Figure 3) (t-test, \( P > 0.05 \)) and, therefore, the number of samples was considered adequate to describe the diet.

The Amundsen plot based on prey-specific abundance against occurrence (Figure 4) suggests that in the Ecuadorian Pacific the common dolphinfish has a varying degree of specialization on different prey taxa. Thus, Hippocampus hippurus, Lagocephalus lagocephalus, Gobiidae and Argonauta sp. showed low occurrence and low prey-specific abundance (lower left), suggesting that all these species are unimportant and rare prey. Scombridae, Pleuroncodes planipes, Portunus xantusii and Opisthonema libertate showed low occurrence and high prey-specific abundance (upper left), indicating they are predated by a low number of individuals. Exocoetidae, located in the upper central area of the graph, may be considered the most important prey species, since it was found in a high percentage of stomachs (%O = 39.39). In spite of the fact that some individuals predated on a small proportion of prey, many of them fed on the dominant taxa (Exocoetidae), explaining the narrow niche width observed (\( B_i = 0.10 \)).

The PERMANOVA analysis showed significant differences in the diet of C. hippurus among the three levels of 'Size class' and 'Date of capture'. The interactions between both of the factors were also significantly different, indicating that the differences in 'Date of capture' were not homogeneous across the levels of the 'Size class' factor (PERMANOVA, \( P = 0.001 \)) (Table 2). Pair-wise PERMANOVA test revealed significant differences in the dietary composition among the three levels of 'Date of capture' for the smallest and medium specimens (PERMANOVA, \( P < 0.01 \)) (Table 3). Only the largest specimens of C. hippurus (\( \geq 110 \) cm in TL) fed on the same prey-species throughout the period of sampling (Table 3).

Table 1. Diet composition of common dolphinfish capture in the Pacific coast of Ecuador. Percentage of weight (%W), occurrence (%O) and alimentary index (%AI).

<table>
<thead>
<tr>
<th>Prey</th>
<th>%W</th>
<th>%O</th>
<th>%AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>79.79</td>
<td>83.33</td>
<td>95.39</td>
</tr>
<tr>
<td>Exocoetidae</td>
<td>28.24</td>
<td>39.39</td>
<td>57.13</td>
</tr>
<tr>
<td>Auxis spp.</td>
<td>11.36</td>
<td>1.52</td>
<td>0.28</td>
</tr>
<tr>
<td>Scombridae</td>
<td>2.22</td>
<td>1.52</td>
<td>0.41</td>
</tr>
<tr>
<td>Merluccius gayi</td>
<td>2.56</td>
<td>0.76</td>
<td>0.10</td>
</tr>
<tr>
<td>Gobiidae</td>
<td>0.42</td>
<td>1.52</td>
<td>0.03</td>
</tr>
<tr>
<td>Hippocampus hippurus</td>
<td>0.13</td>
<td>0.52</td>
<td>0.01</td>
</tr>
<tr>
<td>Unidentifiable fish</td>
<td>2.43</td>
<td>6.82</td>
<td>0.85</td>
</tr>
<tr>
<td>Cephalopod</td>
<td>16.50</td>
<td>17.42</td>
<td>4.13</td>
</tr>
<tr>
<td>Dosidicus gigas</td>
<td>14.05</td>
<td>10.61</td>
<td>7.65</td>
</tr>
<tr>
<td>Argonauta sp.</td>
<td>2.46</td>
<td>6.82</td>
<td>0.86</td>
</tr>
<tr>
<td>Crustacean</td>
<td>3.70</td>
<td>9.09</td>
<td>0.48</td>
</tr>
<tr>
<td>Pleuroncodes planipes</td>
<td>2.69</td>
<td>3.79</td>
<td>0.52</td>
</tr>
<tr>
<td>Portunus xantusii</td>
<td>1.01</td>
<td>5.30</td>
<td>0.27</td>
</tr>
<tr>
<td>Gasteropoda</td>
<td>0.00</td>
<td>1.52</td>
<td>0.00</td>
</tr>
<tr>
<td>Cavoloniidae</td>
<td>0.00</td>
<td>1.52</td>
<td>0.00</td>
</tr>
</tbody>
</table>

According to the SIMPER analysis (Table 4), the diet of C. hippurus was quantitatively characterized by eight prey items (six fish, one cephalopod and one crustacean). Exocoetidae was the only prey item that quantitatively characterized the diet in all size classes, whereas Auxis spp. and Dosidicus gigas were the heaviest contributors to the similarity in two size classes. Thus, Auxis spp. was consumed by the medium (contributing to 97.74% of the similarities) and largest specimens (25.29%), and D. gigas was consumed by the smallest (27.62%) and biggest ones (20.83%). The other prey species identified by SIMPER analysis exclusively characterized a

Fig. 3. Cumulative prey curve for common dolphinfish captured in the Pacific coast of Ecuador.

Fig. 4. Prey-specific abundance plotted against frequency of occurrence of prey species for common dolphinfish from the Pacific coast of Ecuador. Explanatory axes for foraging patterns are those of Costello (1990) as modified from Amundsen et al. (1996). The two diagonal axes represent the importance of prey (dominant vs rare) and the contribution to the niche width (high between-phenotype vs high within-phenotype contribution); the vertical axis defines the predator feeding strategy (specialist vs generalist).
**Table 2.** Results of PERMANOVA test performed on Bray–Curtis dissimilarity matrix based on biomass of prey per stomach.

<table>
<thead>
<tr>
<th>Source</th>
<th>Df</th>
<th>SS</th>
<th>MS</th>
<th>Pseudo-F</th>
<th>P(perm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>2</td>
<td>26,731</td>
<td>13,366</td>
<td>3.38</td>
<td>0.001†</td>
</tr>
<tr>
<td>DC</td>
<td>2</td>
<td>31,933</td>
<td>15,966</td>
<td>5.218</td>
<td>0.001†</td>
</tr>
<tr>
<td>SC × DC</td>
<td>4</td>
<td>51,191</td>
<td>12,798</td>
<td>4.117</td>
<td>0.001†</td>
</tr>
<tr>
<td>Residual</td>
<td>115</td>
<td>3.52E+09</td>
<td>3061.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>123</td>
<td>4.73E+09</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asterisk indicates a significant difference. SC, Size Class; DC, Date of capture.

**Table 3.** *A posteriori* pair-wise permutational multivariate analysis of variance comparison for the significant 'Size Class' and 'Data of capture' interaction.

<table>
<thead>
<tr>
<th>Data of capture</th>
<th>Class I (&lt;80 cm)</th>
<th>Class II (80–110 cm)</th>
<th>Class III (≥110 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>P(perm)</td>
<td>T</td>
</tr>
<tr>
<td>Dec–Jan/Feb–Mar</td>
<td>1.81</td>
<td>0.006†</td>
<td>3.38</td>
</tr>
<tr>
<td>Dec–Jan/Apr–May</td>
<td>3.07</td>
<td>0.001†</td>
<td>2.52</td>
</tr>
<tr>
<td>Feb–Mar/Apr–May</td>
<td>2.11</td>
<td>0.004†</td>
<td>3.97</td>
</tr>
</tbody>
</table>


**Table 4.** Contribution of main prey types (expressed as percentage) to diet of *Coryphaena hippurus* identified by similarity percentage (SIMPER) analysis.

<table>
<thead>
<tr>
<th>Prey</th>
<th>&lt;80 cm</th>
<th>80–110 cm</th>
<th>≥110 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Auxis</em> spp.</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td><em>Dosidicus gigas</em></td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td><em>Engraulis</em> sp.</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td><em>Exocoetidae</em></td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td><em>Lagocephalus</em> lagocephalus</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td><em>Opisthonema</em> libertate</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td><em>Portunus</em> santusii</td>
<td>–</td>
<td>8.03</td>
<td>–</td>
</tr>
<tr>
<td>Unidentifiable fish</td>
<td>8.69</td>
<td>8.22</td>
<td>–</td>
</tr>
</tbody>
</table>


Within the fish group, flyingfish (Exocoetidae) was the most important prey category, as has also been reported in all seas worldwide (Massuti et al., 1998; Oxenford & Hunte, 1999; Sakamoto & Kojima, 1999; Olson & Galván-Magaña, 2002; Malone et al., 2011; Varghese et al., 2013). This family represents a good source of amino acids and lipids (Harewood et al., 1993), showing a high caloric content in comparison with the invertebrate prey species found in the stomachs (Robertson & Chivers, 1997; Tripp-Valdez et al., 2010).

Because *C. hippurus* were captured during night-time hours, the presence of *Myctophum* sp., *Merluccius gayi* and *D. gigas* at an early stage of digestion suggests nocturnal foraging events. Nevertheless, the great number of empty stomachs found (58.73%) indicates that this species feeds mainly in the daytime. This fact was also suggested in similar studies carried out in the Mediterranean, Caribbean and Arabian Seas (Massuti et al., 1998; Oxenford & Hunte, 1999; Varghese et al., 2014). Yet, this hypothesis should be addressed in further studies, since previous observations made in the Gulf of Mexico stream indicated that dolphinfish do not feed during the night (Gibbs & Collette, 1959).

The jumbo squid (*D. gigas*) was the most abundant invertebrate.
found, although its contribution may be underestimated because this species is a common bait used in fishing operations. This squid serves as a trophic link between small mesopelagic organisms and top predators (Gilly et al., 2006) and represents an important component in the diet of sharks, tunas and billfishes in the Ecuadorian Pacific coast (Galván-Magaña et al., 2013; Olson et al., 2014; Rosas-Luis et al., 2016). For instance, Galván-Magaña et al. (2013) reported that D. gigas was the predominant prey in the diet of two pelagic sharks, while Olson et al. (2014) and Rosas-Luis et al. (2016) observed that this species is frequent in the diet of yellowfin tuna (Thunnus albacares) and swordfish (Xiphias gladius). In South Baja California, Aguilar-Palomino et al. (1998) and Tripp-Valdez et al. (2015) reported that the jumbo squid was the most important species in the diet of dolphinfish, while no individual was identified by Tripp-Valder et al. (2016) in the same area. These marked discrepancies are probably associated with environmental changes, which may cause variation in the abundance of this ommastrephid (Nevárez-Martínez et al., 2010).

The presence of the squat lobster (Pleuroncodes planipes) in the diet of dolphinfish was also reported in earlier studies carried out in the eastern Pacific coast (Aguilar-Palomino et al., 1998; Olson & Galván-Magaña, 2002; Torres-Rojas et al., 2014). In terms of energy budget, this crustacean is of little importance for top predator fishes, since galatheid only contain 0.94 kcal g⁻¹ dry weight (Abitia-Cardenas et al., 1997). Nevertheless, this anomuran can appear in a vast abundance in association with El Niño Southern Oscillation (ENSO) events (Thompson et al., 1993; Gutiérrez et al., 2008), as the one that occurred in 2015 (NOAA, 2015).

The size-related and temporal shifts observed in the dietary composition of the common dolphinfish are probably related to the availability of its potential preys. It is known that oscillations in physical (e.g. temperature or salinity) or chemical (e.g. oxygen) factors influence on the abundance of marine organisms (Chavez et al., 2008), The 2015 El Niño, which increased the water temperature in the coast of Ecuador (NOAA, 2015), may cause not only the proliferation of squat lobster but also sporadic increases in squid (i.e. D. gigus) and small fishes (i.e. Myctophidae or Engraulis sp.) (Chavez et al., 2008).

The daily food intake (74.04–210.08 g) suggests that C. hippurus plays an important trophic role in pelagic ecosystems, consuming an estimated 27.03–76.68 kg of prey per individual per year in the Pacific coast of Ecuador. In the eastern Arabian Sea, a higher daily food consumption was found for this species (332.61 g) (Varghese et al., 2013). In comparison with scombrid species, the daily meal estimated in the present study was higher than that reported for tuna mackerel (Euthynnus affinis) in eastern Australia (26–108 g) (Griffiths et al., 2009) and lower than that found for yellowfin tuna in the Equatorial Atlantic Ocean (163.2–153.9 g) (Ménard et al., 2000). Otherwise, the daily prey consumption rate (2.29–4.05% BM day⁻¹) was lower than those previously reported for dolphinfish in the Eastern Pacific Ocean (5.6 ± 0.56 BM day⁻¹) (Olson & Galván-Magaña, 2002) and in the eastern Arabian Sea (5.23% BM day⁻¹) (Varghese et al., 2013). In contrast, Young et al. (1997) and Griffiths et al. (2007) estimated values of 0.73–12.69 and 1.30–2.36% BM day⁻¹ for tunas captured in Australian waters. The marked differences in the consumption rate among locations and taxa may be caused by several factors, including temperature, prey availability, prey biomass and prey type (Buckel & Conover, 1997).

In agreement with an earlier study (Olson & Galván-Magaña, 2002), the dolphinfish daily consumption rate decreased with size length. This finding can be explained by the fact that young fish have faster metabolic rates and thus require more feed relative to their body mass than do larger fish (NRC, 1978). Similarly, Maldenya (1996) and Griffiths et al. (2009) found that in scombrids the daily ration decreases with increasing body size.

The results of this study indicate that the common dolphinfish is an opportunistic feeder, which is able to ingest a wide variety of schooling epipelagic organisms. In order to complement the available information obtained from stomach content analysis, stable isotope analyses, which provide information at larger time-scales, should be undertaken in further investigations aimed at increasing our knowledge on the trophic biology of this species.

FINANCIAL SUPPORT

The present work has been funded by the Andalucia Talent Hub Program launched by the Andalusian Knowledge Agency, co-funded by the European Union’s Seventh Framework Program, Marie Skłodowska-Curie actions (COFUND – Grant Agreement no. 291780) and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucia. J.L.V. benefitted from a grant under the Prometeo Project programme (SENESCYT, Ecuador). This is CEIMAR contribution #114.

REFERENCES


Downloaded from http://www.cambridge.org/core. Acadia University, on 08 Sep 2016 at 19:04:57, subject to the Cambridge Core terms of use, available at http://www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0025315416000175

Diet of Dolphinfish in Ecuador
(Coryphaenidae) associated with FADs in the Ionian and Southern Tyrrenhian Seas. *Cybium* 31, 435–441.


and


Correspondence should be addressed to:
J.L. Varela
Departamento de Biología, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEF-MAR), Av. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
email: joseluis.varela@uca.es